当前位置:首页 > 教育范文 > 教学反思

《简易方程》数学教学反思

时间:2024-09-30 16:37:58
《简易方程》数学教学反思

《简易方程》数学教学反思

身为一名优秀的人民教师,我们的工作之一就是教学,对教学中的新发现可以写在教学反思中,那么大家知道正规的教学反思怎么写吗?下面是小编整理的《简易方程》数学教学反思,仅供参考,希望能够帮助到大家。

《简易方程》数学教学反思1

开学两周了,经过开学后的适应,教学工作已经逐步进入了正常轨道。其实说是适应,只是我的适应,孩子们并没有表现出所谓的"开学综合征",开学近两周他们都表现得很棒!本来刚开学,担心孩子们收不回心来,一直布置很少的一点家庭作业,甚至有时候只是布置预习而已。当然,这样做也许也确实让孩子们能逐渐进入学习状态,避免出现开学倦怠或反感情绪。

在知识方面,原来担心孩子们对方程会有不适应或抵制情绪,结果孩子们都表现不错。方程解法的繁琐并没有让孩子们感到厌倦,因为虽说解方程书写步骤较多,但规律明显,顺向思维不需要过多的思维过程,抓住关键词列方程就迎刃而解了。最近主要的问题是形如12-X=5或56÷X=14这样的方程,用等式的性质来解很别扭,而用传统的方法又怕孩子混淆。其实这个问题教材在设计时早有考虑,原则上这种类型的方程不做要求,因此课本上并没有出现这样的题目。但孩子们在解决问题时自己会列出这样的方程,只好临时先提醒孩子尽量避免列出X在减数或除数位置上的方程。这样做的目的并不是要刻意回避这种问题,而是考虑到孩子们对现在的方法还不够熟练,不宜教给他们另外一种全然不同的解法,这个问题且等孩子们熟练掌握了解方程的方法后再说吧!反正教材是不要求做这种题的。

还有个问题就是在解决问题时,算术方法与列方程的选择。最近一直在学习列方程解应用题,所以孩子们想当然地每道题都列方程解答。教材上虽然有一道题目是指导孩子体验理解用算术方法与方程方法解决问题的区别,能直接套用公式或顺向思维列式的就直接用算术方法解决比较简捷,用逆向思维考虑的问题可以用方程解决比较简捷。可能是由于初学,或者因为没有养成认真分析数量关系的习惯,孩子们在这方面还比较困惑,需要在以后的教学中指导孩子们逐步理解和掌握。慢慢来,不要急。

《简易方程》数学教学反思2

现行第九册数学是新课程标准教材实施改革新内容,其中的利弊在于:

1、教改方向有点聚向七年级的教学方法,意图是与七年级的教学接轨,这种设计本来是一件好事,让小学生尽快接受初中一年级(七年级)教学方法,并为七年级打下良好的学习基础。

2、课程改革改在五年级第一学期就有点不够恰当了,因为五年级第一学期既没有学约分,更没有学六年级的倒数,这样使教师教起来非常困难,学生对这个知识的掌握也十分艰难。如:解方程:20÷2X=10如果用旧知识来解答是非常容易的,是根据“除数=被除数÷商”,就可以求出2X。再根据“一个因数=积÷另一个因数”就可以求出X了。而新教材的教法是方程两边同时2X,先把方程左边的2X消去,而20÷2X2X从小学的算理上讲,应该是从左往右算,(在三至五年级学混合运算都是这样要求学生计算的)这样就会使学生在心理上出现矛盾,很难接受这种算法;即使学生接受了这种算法,方程的右边出现了102X,这时又要在方程的两边同时除以10,便得到2=2X,再把2X和2调换位置,成为2X=2,然后再方程两边同时除以2,才求出X=1,这种算法既费时,对成绩中等以下的学生又难理解,就会导致相当部分学生对这部分知识落下,并对今后的学习会都产生厌学情绪,不利于小学生对知识的掌握,更激发不起学生学习的积极性。

3、在稍复杂的方程的内容安排上也欠妥。在这一内容上,学习解稍复杂的方程的方法和列方程解应用题同时进行,在同一节课要解决两个对于小学生来说都是难点的学习内容,至于教师是没问题的,但对学生来说难度就大了,首先,前面所说的解方程是比较简单的方程,相当部分学生学得一塌糊涂,再进行学习稍复杂的方程更难掌握。其次,正是有稍复杂的方程解答方法不能完全掌握,在学生的心理上就有解不开的结,所以对怎样运用好的方法去进行列出解应用题的方程,那就更难掌握,因此,有部分学生把这一知识采用的学习方法的放弃,这就不利于学生的学习,更不能达到为七年级打好基础的目的。

以上三点是本人在教简易方程中感受最深的浅见,不知各位同行是否有这种感受,请各位同行多提这新教材好教学方法,本人乐意接受。谢谢!

《简易方程》数学教学反思3

本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。

1.本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!

2、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。

3、学生对于方程的书写格式掌握的很好,这一点很让人欣喜.

人教版五年级数学上册《解方程》教学反思

解方程是数学领域里一个关键的知识,在实际中,拥有方程的解法之后,很多人不会算式解题,但是能用方程解题,足以见得方程可以做到一些算式无法超越的能力。

而如今五年级的学生开始学习解方程,作为教师的我更应该让学生吃透这方程,突破这重难点。在教这单元之前,我一直困惑解方程要采用初中的“移项解题,还是运用书本的“等式性质解题,面对困惑,向老教师请教,原来还有第三种老教材的“四则运算之间的关系解题,方法多了,学生该吸收那种方法呢?困惑,学生该如何下手,运用“移项解题,学生对于这个概念或许不会系统清晰,但是“等式性质解题时,在碰到a-x=b和a÷x=b此类的方程,学生能如何下手,“四则运算之间的关系老教材的方式改变,必有他的理由,能用吗?

困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接 ……此处隐藏2959个字……实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受--解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。

2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。要教他们列方程时怎么避免X前面是除号或减号的方程的出现等等。

《简易方程》数学教学反思9

《解简易方程》教学反思数学课程标准(实验稿)》改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:

老方法:

x + 4 = 20

x = 20-4

依据运算之间的关系:一个加数等于和减另一个加数。

新方法:

x + 4 = 20

x + 4-4=20-4

依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。

改革的原因(摘自教学参考书):

新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。

从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。

那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。

1.无法解如a-x=b和ax=b此类的方程

新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与xa=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓相比原来方法,思路更为统一的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而ax=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。

我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或ax=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更会无法避免地直接和方程思想发生矛盾。

如3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?

合理的做法应是设桃子每千克X元,从顺向思考,列出方程为2.53-5X=0.5。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成5X+0.5=2.53之类的方程。又如:课本第62页中的爸爸比小明大28岁,小明Х岁,爸爸40岁。很多学生根据爸爸比小明大28岁列出40-Х=28,可是无法求解,所以又转成Х+28=40。

很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成5X+0.5=2.53 Х+28=40那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢?

我们不难看出,根据现实情境列方程解决问题,X当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。

2.解方程的书写过程太繁琐

教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。

因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了

从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?

《简易方程》数学教学反思10

今天早上在库沟小学听了张福华老师的《简易方程的整理和复习》这节复习课。这是我第一次听复习课,以往只是从教学策略上了解复习课的教学流程,当今天真真正正的倾听了一节复习课后,感受颇深,所学甚多,只奈何有言吐不出,下面就简单说一些听完这节课的体会。

首先,张老师的语言简练干脆,善于利用名言名句。

在课的开始,大屏幕上就展示出了俄国乌申斯基的一句话:“装着一些片段的,没有联系的知识的头脑,就像一个乱七八糟的仓库,主人从那里是什么也找不出来的。”这句话的展示,让学生一下子就了解了整理的重要性,也了解了这节课的目的所在。在回顾整理,构建网络这一环节,张老师在让学生自己看课本例题的知识点时又说了一句“不动笔墨不读书”,提醒了学生看例题时可以适时的进行批画,将遗忘的知识点突出显示出来。在课的最后又课件展示了韦达和爱因斯坦的名言警句。

其次,目录归纳知识点,清楚明了。

我想所有的老师都会头疼复习某一单元或某一册课本时知识点的归纳,只奈何没有更好的方法可以把所有知识点系统的展现给学生。本节课张老师的方法让我眼前一亮,目录展示法,让所有知识点的区别和联系清楚的摆了出来,方便了学生的回顾和整理。

最后,练习充实有趣,层次分明。

闯关形式的练习提高了学生的积极性,激发了学生的好胜心。在一,二,三的闯关中,依次将基础知识点,重难点进行了练习,稳固。学生在回答闯关的答案时,张老师经常会问一个为什么,引导学生对知识点进行再回顾。例如,在一名学生回答bX8等于8b时,问为什么不是b8?在学生回答aXa=a的平方时,问为什么不是2a?看似不经意的询问,却巩固了细微处的知识点。

当然,张老师的课还有许多值得我学习的地方。例如,创设了有效地复习情景,亲和力强,能及时唤起回忆,将零散的知识系统化等等。通过这节课,让我更清楚的了解了复习课的教学模式,对以后上好复习课有了更多的信心。

《《简易方程》数学教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式